THT Current Sense Transformers

P0581NL / P0582NL AND P0583NL

- UL/C-UL recognized components
- 3000Vrms gate to drive winding test
- Useful operating frequency from 50kHz to 500 kHz
- Most popular winding configurations

![Image of current sense transformer]

Electrical Specifications @ 25°C - Operating Temperature -40°C to +130°C

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Turns Ratio</th>
<th>Primary Inductance (1-10) (mH MIN)</th>
<th>DCR Pri (1-10) (Ω MAX)</th>
<th>DCR Sec1 (3-7) (mΩ ±15%)</th>
<th>DCR Sec2 (4-8) (mΩ ±15%)</th>
<th>Hipot (Pri-Sec) (Vrms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0581NL</td>
<td>200:1:1</td>
<td>76</td>
<td>2.8</td>
<td>1.7</td>
<td>1.7</td>
<td>3000</td>
</tr>
<tr>
<td>P0582NL</td>
<td>100:1:1</td>
<td>19</td>
<td>1.4</td>
<td>1.7</td>
<td>1.7</td>
<td>3000</td>
</tr>
<tr>
<td>P0583NL</td>
<td>50:1:1</td>
<td>5</td>
<td>0.7</td>
<td>1.7</td>
<td>1.7</td>
<td>3000</td>
</tr>
</tbody>
</table>

Additional Specifications

<table>
<thead>
<tr>
<th>Part Number</th>
<th>RT</th>
<th>Ipk (Amps)</th>
<th>Droop (%)</th>
<th>Max Flux Density</th>
<th>Kb</th>
<th>Req (mΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0581NL</td>
<td>200</td>
<td>34</td>
<td>1.00</td>
<td>2000</td>
<td>1712</td>
<td>.9</td>
</tr>
<tr>
<td>P0582NL</td>
<td>100</td>
<td>35</td>
<td>1.98</td>
<td>2000</td>
<td>68.49</td>
<td>.8</td>
</tr>
<tr>
<td>P0583NL</td>
<td>15</td>
<td>36</td>
<td>1.19</td>
<td>2000</td>
<td>273.97</td>
<td>.75</td>
</tr>
</tbody>
</table>

Notes:

1. These current sense transformers have two one turn primaries that can be used in parallel. The listed current ratings are for parallel connection.
2. The reference values are for an application using the termination resistor (RT) and operating with unipolar waveform at 100kHz, 40% duty cycle. The estimated temperature rise is 55°C.
3. The peak flux density should remain below 2100 Gauss to ensure that the core does not saturate. Use the following formula to calculate the peak flux density: Bpk = Kb * Ipk * Rt * don/(Ff * freq. in kHz) where: RT is the terminating resistor in the application and the FF is 1 for unipolar waveform and 2 for bipolar waveform.
4. To calculate the droop: Droop Exponent (D) = Rt * don/(Lpri in mH * Freq. in kHz %Droop = (1-e^D) * 100
5. The temperature rise of the component is calculated based on the total core loss and copper loss:
 A. To calculate total copper loss (W): P(cu) = Ipk^2 * Req * Ff * don where Ff is 1 for unipolar waveform and 2 for bipolar waveform
 B. To calculate total core loss (W): P (core) = 0.000073 * (Freq. in kHz)^(1.67) * (Bop in kG)^2.532 where: Bop in kG = Kb * Ipk * Rt * don/(2000 * Freq. in kHz)
 C. To calculate temperature rise: Temperature Rise (C) = 60.18 * (Core Loss (W) + Copper Loss (W))^(0.833)
THT Current Sense Transformers
P0581NL / P0582NL AND P0583NL

For More Information

Pulse Worldwide Headquarters
15255 Innovation Drive Ste 100
San Diego, CA 92128
U.S.A.
Tel: 858 674 8100
Fax: 858 674 8262

Pulse Europe
Pulse Electronics GmbH
Am Rottland 12
58540 Meinerzhagen
Germany
Tel: 49 2354 777 100
Fax: 49 2354 777 168

Pulse China Headquarters
Pulse Electronics (ShenZhen) CO., LTD
D708, Shenzhen Academy of Aerospace Technology,
The 10th Keji South Road,
Nanchan District, Shenzhen,
P.R. China 518057
Tel: 86 755 33966678
Fax: 86 755 33966700

Pulse North China
Room 2704/2705
Super Ocean Finance Ctr.
2067 Yan An Road West
Shanghai 200036
China
Tel: 86 21 62787060
Fax: 86 2162786973

Pulse South Asia
3 Fraser Street 0428
DUO Tower
Singapore 189552
Tel: 65 6287 8998
Fax: 65 6280 0080

Pulse North Asia
1F., No.111 Xiyuan Road
Zhongli District
Taoyuan City 32057
Taiwan (R.O.C)
Tel: 886 3 4356768
Fax: 886 3 4356820

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2019. Pulse Electronics, Inc. All rights reserved.